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Abstract

Genes that are thought to be critical for the survival of organisms or cells are called essential genes. The prediction of
essential genes and their products (essential proteins) is of great value in exploring the mechanism of complex diseases, the
study of the minimal required genome for living cells and the development of new drug targets. As laboratory methods are
often complicated, costly and time-consuming, a great many of computational methods have been proposed to identify
essential genes/proteins from the perspective of the network level with the in-depth understanding of network biology and
the rapid development of biotechnologies. Through analyzing the topological characteristics of essential genes/proteins in
protein–protein interaction networks (PINs), integrating biological information and considering the dynamic features of
PINs, network-based methods have been proved to be effective in the identification of essential genes/proteins. In this
paper, we survey the advanced methods for network-based prediction of essential genes/proteins and present the
challenges and directions for future research.

Key words: essential genes/proteins; network-based methods; topological characteristics; biological information;
dynamic features

Introduction
Essential genes and proteins are closely related to the cell
metabolism, differentiation and apoptosis [1]. The identification
of essential genes or proteins is mainly for the following reasons.
From a theoretical perspective, it contributes to know the
minimum demands for cell survival well [2, 3], which plays

a vital role in synthetic biology. From a practical perspective,
as essential genes or proteins are indispensable for bacterial
survival, they are also used as drug targets [4] of new antibiotics.
Furthermore, some studies have shown that essential genes
are closely related to pathogenic genes [5], thus the prediction
of essential genes is of great significance for the discovery of
pathogenic genes [6, 7].

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbz017/5320214 by C

entral South U
niversity user on 04 D

ecem
ber 2019

https://academic.oup.com/
http://orcid.org/0000-0002-0188-1394


2 X. Li et al.

In the biological field, the prediction of essential genes
mainly relies on laboratory strategies, such as gene knockout [8,
9], RNA interference [10, 11], antisense RNA [12] and transposon
mutagenesis [13, 14]. However, as the number of genes in
cells is enormous, experimental techniques are undoubtedly
complicated. Moreover, the time of experimental techniques
is overhead and these techniques hardly apply to some
complex organisms, especially humans. Thus, some researchers
began to develop computational methods to identify essential
genes/proteins.

In organisms, genes or proteins do not function indepen-
dently; the interactions between genes or proteins exist exten-
sively and maintain the stability of internal environment [15, 16].
Many of the interactions between genes/proteins have been
identified by experimental techniques such as yeast two-hybrid
[17], tandem affinity purification and mass spectrometry [18] or
by computational methods [19, 20]. The complex biological net-
works consisting of the interacted genes/proteins are generally
scale-free [21], meaning that there are only a few highly con-
nected nodes and many rarely connected nodes in the networks.
In the scale-free networks, removing highly connected nodes
will be more possibly to destroy the connectivity of networks
or increase the shortest path length between nodes [22]. The
previous studies have proved that highly connected nodes are
more essential than rarely connected nodes in maintaining the
functions of scale-free biological networks or the stability of
organisms [23–25], which has been verified in the yeast, nema-
tode and fly [26–28]. This means that the essentiality of genes
or proteins is possible to be predicted through analyzing the
topological characteristics of nodes in the biological networks.
Up to now, various topology-based methods have been proposed
to predict essential genes or proteins [29–31].

However, there are still certain constraints on the topology-
based analysis. On the one hand, a significant proportion of
protein-protein interaction (PPI) data is incomplete and contains
a lot of noises, which may lead to the inaccurate identification of
essential genes or proteins only based on topological methods.
On the other hand, the intrinsic biological properties of genes
or proteins in the organisms are not fully considered. Based
on the biological characteristics of essential genes or proteins,
such as conservation, modularity and dynamics, integrating bio-
logical information can help further study the functional rele-
vance among genes/proteins. Thus methods integrating protein–
protein interaction networks (PINs) and biological information,
dynamic network-based methods and machine learning-based
methods have been proposed to predict essential genes or pro-
teins [32–34].

In this review, our purpose is to summarize the works related
to the network-based identification of essential genes or pro-
teins and attempts to help readers have acquaintance with the
current developments and further directions in this field. The
paper is organized from the following aspects. First, available
databases related to essential genes/proteins are introduced. In
Topology-based methods to predict essential genes or proteins,
we review the topological methods that characterize the
gene/protein essentiality. In Integrating PINs and biological
information to predict essential genes or proteins, we present
an overview of methods that integrate network topological and
biological properties. In Dynamic network-based methods to
predict essential genes or proteins, the dynamic network-based
prediction methods are presented. In Machine learning-based
methods to predict essential genes or proteins, we introduce
the prediction methods based on machine learning. In Tools and
applications, we introduce the tools and applications related to

the prediction of essential genes or proteins based on network.
To the end, challenges and future work are discussed.

Essential genes/proteins and related
information
Essential genes or proteins

At present, the known essential genes or proteins mainly come
from the following databases: DEG [35], MIPS [36], SGD [37], SGDP,
OGEE [38], and EGGS [39]. Researchers can harness these types
of data to study intrinsic characteristics of essential genes/pro-
teins, reveal the characteristics that are tightly bound to the
essentiality and finally propose computational methods to pre-
dict essential genes/proteins. Meanwhile, these data, which is
verified by experiments, can be used as the golden standard data
to verify the prediction results. Moreover, there is a database
for collecting some predicted essential genes: pDEG [40]. A brief
description of these essential gene databases is listed in Table 1.

Related biological information

The biological information closely related to essential genes
or proteins is based on topological characteristics in PINs and
biological information such as microarray data, RNA-seq data,
protein domains, orthology, subcellular localization, gene ontol-
ogy and protein complex. A brief description of the databases of
related biological information is listed in Table 2.

Protein–protein interaction networks

Proteins are not independent, but interact with each other to
maintain the stability of the internal environment of cells. By
analyzing the PINs, comprehensive information can be obtained
and intricate relationships that manage cellular activities can be
revealed. It has been shown that the essentiality of a protein is
closely associated with its network centralities in PINs.

There are a large number of publicly available PPI databases,
such as DIP [41], STRING [42], BioGRID [43], HPRD [44], MIPS [45],
MINT [46], IntAct [47]. Each database has its own property, includ-
ing a large number of data types and different levels of annota-
tion; PINs can be constructed by using one database or integrated
from multiple databases based on certain properties. Due to
the PPI data from multi-sources, reliable PINs can be obtained
by weighting edges or filtering out the false-positive edges.
Meanwhile, some databases, such as STRING, IntAct and MINT,
also provide scores with reliability of interactions obtained from
different sources. Researchers can filter out interactions with
low scores by setting thresholds to obtain more reliable PPI data.

Microarray and RNA-seq data

Microarray data can be used to analyze the changes of molec-
ular abundance, the correlation between genes and the activi-
ties of genes under different conditions. RNA-seq data is used
to determine the sequence, structure and abundance of RNA
molecules in a specific sample; it can provide a more com-
prehensive gene expression profile. More precise results are
expected to be obtained through the use of RNA-seq data rather
than microarray data. Gene Expression Omnibus (GEO) is the
largest and publicly available database that stores microarray
and RNA-seq data. The microarray and RNA-seq data are gen-
erally used together with PINs.

Protein domains

Proteins are usually made up of one or more functional domains
and different combinations of domains generate a wide variety
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Table 1. Databases of essential genes or proteins

Database Scale Description URL

DEG 44 bacteria
1 archaea
8 eukaryotes

Database of Essential Genes. A database of currently
available essential genomic elements.

http://www.essentialgene.org

pDEG 16 mycoplasma genomes Database for storing predicted essential genes. http://tubic.org/pdeg/

MIPS Saccharomyces cerevisiae The Munich Information Center for Protein Sequences.
A data resource maintaining the yeast genome database
that can extract essential genes in yeast genome.

http://mips.gsf.de

SGD Saccharomyces cerevisiae Saccharomyces Genome Database. A database storing
information about budding yeast DNA and protein
sequences, genetics, cell biology and the associated
community of researchers.

https://www.yeastgenome.org

SGDP Saccharomyces cerevisiae Saccharomyces Genome Deletion Project. A web page
containing the essential and non-essential open reading
frames in the S. cerevisiae genome.

http://www-sequence.stanford.edu/
group/yeast_deletion_project

OGEE 9 eukaryotes
39 prokaryotes

Online GEne Essentiality database. A database storing
experimentally verified essential and non-essential genes
as well as related gene features.

http://ogee.medgenius.info/browse

EGGs Bacteria Essential Genes on Genome Scale. A database containing
microbial gene essentiality data.

http://www.nmpdr.org/FIG/eggs.cgi

of proteins. Accordingly, identifying the domains that occur
within proteins helps to understand their functions. Studies
have shown that the essentiality of a protein may be preserved
through the function of protein domains or the combination of
domains, rather than entire proteins [48]. The data of protein
domains can be downloaded from the Pfam database, which is a
repository of protein families [49].

Orthology information

Orthologs are homologous proteins that come from a common
ancestor in the process of biological evolution. They usually
have high sequence similarities and have the same or extremely
similar functions. The information of orthologous proteins can
be collected in the databases of Clusters of Orthologous Groups
of proteins (COG) [50], OrthoMCL [51], Orthologous Matrix (OMA)
[52], IsoBase [53], Inparanoid [54], OrthoDB [55] and EggNOG [56].

Subcellular localization information

Proteins should be located in suitable subcellular compartments
to perform their functions and PPIs only occur when proteins are
in the same subcellular compartment. At present, the subcellular
localization information is mainly used to filter false-positive
edges in PINs, that is, physical interactions do not occur when
the two proteins are not in the same subcellular localization. The
subcellular localizations in a eukaryotic cell are usually divided
into the following 11 categories: cytoskeleton, cytosol, endoplas-
mic, endosome, extra-cellular, Golgi, mitochondrion, nucleus,
peroxisome, plasma and vacuole. Currently, in addition to some
comprehensive protein localization databases such as UniPro-
tKB, there are also some specific protein localization databases.
For instance, FunSecKB2 [57] for fungal proteins, PlantSecKB
[58] for plant proteins, MetazSecKB [59] for human and animal,
LocDB [60] for human and Arabidopsis and COMPARTMENTS
[61], which contains the subcellular localization information of
several species.

Gene ontology

The Gene ontology (GO) defines concepts used to represent gene
functions and relationships between these concepts. GO can
be divided into the following three aspects: cell components,
molecular functions and biological processes. A directed acyclic
graph can represent these three ontologies, where nodes rep-
resent terms, edges correspond to their relationships. Ontol-
ogy data can be downloaded from the Gene Ontology database
[62, 63].

Protein complex

Protein complex is a collection of proteins that forms a multi-
molecular mechanism in the same time and space [64, 65]; they
are the basis of many life activities and can accomplish quite a
lot of biological functions. The standard protein complex data
can be downloaded from the CYC2008 [66] and MIPS/CORUM [45,
67] databases.

Topology-based methods to predict essential
genes or proteins
Removing some genes or proteins will bring huge changes into
the network, such as causing PINs to rapidly collapse into iso-
lated nodes or clusters [23], which will break the function of the
modules or the interactions in key biological processes. There-
fore, the essentiality of a gene or protein is closely related to
its topological characteristics in PINs. Topology-based methods
score genes or proteins by their centralities in the PINs and their
sorting scores are subsequently used to determine if the genes
or proteins are essential.

A PIN can be denoted as a graph G = (V, E), where V =
{v1, v2, . . . , vn} is the set of nodes corresponding to genes, metabo-
lites or proteins. E = {e1, e2, . . . , em} is the set of edges correspond-
ing to the connections among them, n and m are the number of
nodes and edges, respectively. The adjacency matrix of a graph is
recorded as A = (aij), and aij = 1 if and only if there is a connection
between the node vi and vj, otherwise aij = 0.
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Table 2. Databases of related biological information

Information Databases Scale Description URL

PPIs DIP 834 organisms
28 826 genes/proteins
81 762 interactions

Database of Interacting Proteins. It
specifically stores experimentally
verified PPIs from literature reports.

http://dip.mbi.ucla.edu/dip

STRING 2031 organisms
9 643 763 genes/proteins
1 380 838 440 interactions

Search Tool for the Retrieval of
Interacting Genes/Proteins. A database
that includes proteins and their
functional interactions.

https://string-db.org

BioGRID 15 892 753 genes/proteins
188 517 interactions

Biological General Repository for
Interaction Datasets. A database of
repository for physical and genetic
interactions.

https://thebiogrid.org

HPRD 30 047 genes/proteins
41 327 interactions

Human Protein Reference Database. A
comprehensive database containing
various information such as protein
annotation, PPIs, post-transcriptional
modification, and subcellular
localization.

http://www.hprd.org

MIPS-MPPI 992 genes/proteins
937 interactions

MIPS Mammalian Protein–Protein
Interaction Database. A database of
high-quality mammalian PPIs obtained
from literature mining techniques.

http://mips.helmholtz-
muenchen.de/proj/ppi

MINT 648 organisms
25 530 genes/proteins
125 464 interactions

The Molecular INTeraction Database. A
database for storing experimentally
validated molecular interactions which
are extracted from literatures.

https://mint.bio.uniroma2.it

IntAct 99 807 genes/proteins
751 286 interactions

IntAct Molecular Interaction Database. A
database providing the data of
biomolecular interactions and
corresponding analysis tools.

https://www.ebi.ac.uk/intact

Gene expression
data

GEO 4348 data sets
99 667 series
18 654 platforms
2 537 944 samples

Gene Expression Omnibus. The largest
and publicly available database. It
includes array-based and
sequence-based data.

https://www.ncbi.nlm.nih.
gov/geo

Protein domains Pfam 16 712 families
604 clans

The protein families database. A
database of protein families.

http://pfam.xfam.org

Orthology
information

COG 4623 clusters of orthologous
groups

Clusters of Orthologous Groups. A
database derived from extensive
comparisons of complete prokaryotic
protein sequences.

https://www.ncbi.nlm.nih.
gov/COG

OrthoMCL 150 genomes
1 398 546 protein sequences
124 740 ortholog groups

A database for constructing orthologous
groups using a Markov Cluster method.

http://orthomcl.org

OMA 1617 bacteria
141 archaea
327 eukaryota

Orthologous Matrix. A database for the
inference of orthologs among integrated
genomes.

https://omabrowser.org

IsoBase 5 eukaryotic species
87 773 protein sequences
12 693 orthologs
48 120 constituent proteins

IsoRank PPI networks Alignment Based
Ortholog Database. A database of
functionally related orthologs.

http://isobase.csail.mit.edu

Inparanoid 273 organisms
3 718 323 sequences

A database providing the orthologs
obtained by the InParanoid algorithm.

http://InParanoid.sbc.su.se

EggNOG 2031 organisms
190 000 orthologous groups

Evolutionary genealogy of genes:
nonsupervised Orthologous Groups. A
database of functional descriptions and
annotations for orthologous groups.

http://eggnogdb.embl.de

OrthoDB 659 eukaryota
3663 bacteria
345 archaea
3139 viruses

The Hierarchical Catalog of Orthologs. A
database combining GO and InterPro to
describe orthologs.

https://www.orthodb.org

Continued
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Table 2. (continued)

Information Databases Scale Description URL

Subcellular
localization
information

FunSecKB2 1 976 832 proteins A fungal protein subcellular location
knowledgebase.

http://bioinformatics.ysu.edu/
secretomes/fungi2/index.php

PlantSecKB 1 415 921 proteins The plant secretome and subcellular
proteome knowledgebase.

http://bioinformatics.ysu.edu/
secretomes/plant/index.php

MetazSecKB 4 080 818 proteins The human and animal secretome and
subcellular proteome knowledgebase.

http://bioinformatics.ysu.edu/
secretomes/animal/index.php

LocDB total number of proteins:
13 342 human
6262 Arabidopsis thaliana

Protein Localization Database for
Human and Arabidopsis.

https://www.rostlab.org/services/
locDB

COMPARTMENTS 20 021 by knowledge
4841 by experiments.
1468 by text mining
15 788 by sequence-based
predictions

A comprehensive database of
subcellular location of proteins.

http://compartments.jensenlab.
org

Gene ontology Gene Ontology
database

Over 600 000
experimentally-supported
GO annotations

A comprehensive database of functions
of genes and proteins.

http://www.geneontology.org

Protein complex CYC2008 408 heteromeric protein
complexes

A comprehensive database of 408
manually curated heteromeric protein
complexes that are reliably supported
by small-scale experiments reported in
the current literature.

http://wodaklab.org/cyc2008

MIPS-CORUM 7570 protein complexes The comprehensive resource of
mammalian protein complexes.

http://mips.gsf.de/genre/proj/
corum/index.html

Generally, the topology-based methods can be divided into
the following four types: neighborhood-based methods, path-
based methods, eigenvector-based methods and methods that
combine multiple topological centralities. Table 3 lists the sum-
mary of topology-based methods and a toy network is given
to show the computation of classical topology-based methods
(Figure 1).

Neighborhood-based methods

Neighborhood-based methods estimate the essentiality of
a node by considering its neighbors. Typical neighborhood-
based measures are degree centrality (DC) [23], local average
connectivity (LAC) [29], edge-clustering coefficient centrality
(NC) [30], density of maximum neighborhood component
(DMNC) [68] and the topology potential-based (TP) centrality [69].

Degree centrality

DC [23], the well-known and simplest network-based method,
holds that the more neighbors of a node has, the great it impacts.
It is noteworthy that nodes with same degree have different
influences in networks of different sizes. For comparison, the
normalized DC value of a given node vi is defined as the follow-
ing equation.

DC(i) = ki

n − 1
, (1)

where ki = ∑
j∈Ni

ei,j | ei,j ∈ E and Ni corresponds to the neighbor
set of vi.

The DC index has the characteristics of simplicity, intuition
and low computational complexity. In some studies, such as
network robustness and vulnerability, degree-targeted attack is

more effective for scale-free or exponential networks compared
with betweenness centrality (BC), closeness centrality (CC) and
eigenvector centrality (EC). The disadvantage of DC is that only
the information that has the most direct influence on nodes is
considered, and the information such as higher-order neighbors
is not discussed in more detail, thus it is not accurate enough in
many cases.

Local average connectivity

Although essential proteins usually have high connectivity, a
certain number of highly connected proteins are not essential
and few neighbors of these proteins have been found to interact
with each other. In order to distinguish between essential and
nonessential proteins with high connectivity, the method LAC
[29] is proposed. For a given node vi, its LAC value is defined as
the following equation.

LAC(i) =
∑

wεSi
DCCi(w)

|Si | , (2)

where Si is the set of neighbors of vi. Ci is a subnetwork consisting
of nodes in Si and edges between these nodes. For a node w in
Si, its local connectivity DCCi(w) is defined as how many other
nodes in Ci it connects directly.

Edge-clustering coefficient centrality

Traditional centrality methods measure the importance of nodes
in PPI networks, but often ignore the importance of the edges
between nodes. Some researches indicate that there is a close
relationship between nodes and edges in PPI networks. NC [30] is
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Table 3. Summary of network-based methods

Methods Short Description Network Data Reference

DC DC calculates the number of neighbors in the
network.

Unweighted PPIs [23]

LAC LAC measures the importance of a node based on the
local average connectivity.

Unweighted PPIs [29]

NC NC scores a node by calculating the edge-clustering
coefficient between the node and its neighbors.

Unweighted PPIs [30]

DMNC DMNC calculates the density among the neighbors of
this node.

Unweighted PPIs [68]

TP TP calculates the topology potential of each node. Weighted
Unweighted

PPIs [69]

CC CC calculates the average of distance between the
node and all other nodes in the network to eliminate
the interference of special values.

Unweighted PPIs [74]

IC IC measures the importance of nodes by the amount
of information that is propagated in paths.

Unweighted PPIs [75]

BC BC measures the number of shortest paths passing
through the node.

Unweighted PPIs [76]

SC SC calculates the number of closed loops in which the
node appears.

Unweighted PPIs [77]

EC EC calculates the essentiality of a node depends on
both the number of its neighbors and the importance
of each neighbor.

Unweighted PPIs [81]

PR PR measures the importance of a node depends on
the quantity and quality of the other nodes pointing
to it.

Unweighted PPIs [82]

LR LR adds a ground node who connects to all nodes
through directional links to replace the parameter
d in PR.

Unweighted PPIs [83]

HITs HITs uses different indicators to score nodes in the
network.

Unweighted PPIs [84]

GOS GOS purifies PPI networks and uses a random walk
model to integrate a protein’s topological features
and its orthology.

Unweighted PPIs; Gene expression profiles;
Subcellular localization
information; Orthology information

[94]

SPP SPP partitions PPI networks by subcellular localization
data to obtain subnetworks with different priorities.

Unweighted PPIs; Subcellular localization
information;

[96]

ION ION integrates the orthology with PPI networks and
uses an iteration method to obtain the rank of
proteins.

Weighted PPIs; Orthology information [98]

UDoNC UDoNC calculates the number and the frequency of
protein domain types and the edge clustering
coefficient to score proteins.

Weighted PPIs; Protein domains [101]

RSG RSG constructes a weighted PPI networks by the GO
annotation and Pearson correlation of RNA-seq data,
and the weighted edge clustering coefficient is used
to measure the connectivity of nodes.

Weighted PPIs; Gene expression profiles (RNA
seq and microarray); Subcellular
localization information; GO
information

[32]

LIDC LIDC integrates a local interaction density of PPI
networks with protein complex information by an
integration strategy for multiple bioinformatics.

Unweighted PPIs; Protein complex [105]

SCP SCP integrates the subcellular compartments, Pearson
correlation of gene expression and PPI networks.

Weighted PPIs; Gene expression profiles [99]

PEMC PEMC integrates modularity and conservatism of
proteins in the PPI networks.

Weighted PPIs; Gene expression profiles;
Protein domains; Orthology
information

[100]

LSED LSED is combined with several centrality methods
separately to calculate localization-specific centrality
scores for proteins based on the protein subcellular
localization interaction networks.

Unweighted PPIs; Subcellular localization
information

[95]

UC UC is a united complex centrality that integrates the
protein complexes with the topological features of PPI
networks.

Weighted PPIs; Protein complex [107]

Continued
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Table 3. (continued)

Methods Short Description Network Data Reference

SON SON integrates the information of subcellular
localization, orthologous proteins and PPI networks
by a linear combination strategy.

Weighted PPIs; Subcellular localization
information; Orthology information

[108]

CIC CIC scores the edges taken place in different
compartments.

Weighted PPIs; Gene expression profiles;
Subcellular localization information

[102]

PeC PeC scores each edge in the PPI networks using NC
and PCC.

Weighted PPIs; Gene expression profiles [103]

WDC WDC assigns a suitable ratio for PCC and NC to
evaluate the importance of edges in PPI networks.

Weighted PPIs; Gene expression profiles [104]

TS-PIN TS-PIN keeps interactions that the two proteins
appear in the same subcellular location and are
activated at least at one time point.

Unweighted PPIs; Gene expression profiles;
Subcellular localization information

[123]

NF-APIN NF-APIN uses time-dependent and time-independent
models to process gene expression profiles and
constructs an active PPI networks based on
co-expressed genes.

Unweighted PPIs; Gene expression profiles [33]

Zhong et al. Integrating multiple biological features and
topological features into an SVM-RFE model.

Unweighted PPIs; Gene expression profiles;
Orthology information; Subcellular
localization information

[126]

CENT-ING-GO Integrating topological features and GO information
into an ensemble model.

Unweighted PPIs; Transcriptional regulatory
networks; Metabolic networks; GO
information

[34]

Deng et al. Integrating topological features and sequences into
an ensemble model.

Unweighted Gene expression networks;
Sequence data

[48]

Gustafson et al. Integrating topological features and sequences into a
naive bayes model.

Unweighted PPIs; ORF length; Paralogs; Codon
adaptation; Phyletic retention

[128]

Acencio et al. Integrating cellular localization, topological features
and BP information into a decision tree-based model.

Unweighted PPIs; Cellular localization
information; GO information

[129]

Zeng et al. Integrating PPI topological features and gene
expression profile patterns into a deep learning
model.

Unweighted PPIs; Gene expression profiles [130]

Figure 1. A schematic network demonstrating different topology-based meth-

ods. We use vi (yellow node) as an example to demonstrate different topology-

based methods. The DC of node vi is 4 and its normalized DC value is 0.8, because

it has four edges connecting with b, d, e, f . The LAC of node vi is equal to 0.5,

because Si =
{
b, d, e, f

}
and Ci only contains the edge between e and f . The NC

of node vi is equal to 2, because there is one triangle consisting of vi, e and f .

For the method of DMNC, N is equal to 2 and E is equal to 1, that is, e, f and the

edge between them. The TP-based centrality of node vi is equal to 1.33. The CC

of node vi is equal to 0.833, because the shortest paths of vi and b, c, d, e, f are 1,

2, 1, 1 and 1, respectively. According to the formula, the IC of node vi is 2.25, the

BC of node vi is 13, the SC of node vi is 4.617 and the EC of node vi is equal to

0.598.

proposed to reduce the false positives when predicting essential
proteins with high connectivity from a different perspective.
NC is a method that binds the importance of edges and the

closeness of two nodes effectively. For a given node vi, its NC
value is defined as the following equation.

NC(i) =
∑

j∈Ni

zi,j

min
(
DC(i) − 1, DC(j) − 1

) . (3)

For the edge ei,j, zi,j denotes the number of triangles that
contain the edge ei,j actually in the network. DC(i) and DC(j) cor-
respond to the degree of nodes vi and vj, respectively, min

(
DC(i)−

1, DC(j) − 1
)

denotes the maximum number of triangles that the
edge ei,j can participate in.

Density of maximum neighborhood component

Based on the conclusion that essential genes or proteins are
inclined to appear in clusters, DMNC [68] identifies whether a
gene or protein is essential or not by calculating the density
among the neighbors of this protein. For a given node vi, its
DMNC value is defined as the following equation.

DMNC(i) = E
(
C(i)

)

N
(
C(i)

)ε , (4)

where C(i) is a maximum neighborhood subnetwork composed
of the neighbors of vi and their edges, and C(i) does not include
the node vi and the edges which is related to vi. N is the number
of nodes and E is the number of edges in C(i). The range of
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8 X. Li et al.

parameter ε is between 1 and 2. In general, ε is set to be 1.7, which
can obtain the better prediction results.

Topology potential-based centrality

The concept of physics field was used to describe the non-
contact interactions of material particles. Inspired by the devel-
opment of field theory, TP [69] regards the PINs as a physical
system and calculates the topology potential of each protein to
analyze its essentiality in the network. For a given node vi, its TP
value is defined as the following equation.

TP(i) =
n∑

j=1

(

mj × e−
(

ρ(i,j)
σ

)2 )

. (5)

For a node vj influenced by the node vi, mj is the quality of
node vj

(
j = 1, . . . , n

)
and the value is 1. ρ

(
i, j

)
is the shortest path

of vi and vj in the network. For the impact factor σ , since essential
proteins has the characteristics of clustering, their influence
range only includes direct neighbor nodes and indirect neighbor
nodes [70, 71], the optimal impact factor of the PIN is set to
0.9428, thus ensuring that the influence range of a protein is not
exceed 2.

TP-NC [69] is an improved method of TP, which utilizes NC as
the intrinsic attribute of TP, that is, TP-NC calculates a protein’s
mj with NC.

In addition to the above-mentioned methods, there are some
other neighborhood-based methods that can also be used to
predict essential proteins. For example, Kitsak et al. [72] propose
the k-shell decomposition method to determine the location of
nodes in the network. As the location of a node in network is
also a crucial factor in predicting the essentiality of the node,
the k-shell decomposition method can also be used to predict
essential proteins. There are also some researchers who inte-
grate or improve the above neighborhood-based methods. For
example, Shang et al. [73] consider that LAC only takes into
account the direct neighbors, they propose a new method named
LAC2 that integrate the local connectivity values of nodes and
their neighbors together.

Path-based methods

Unlike the methods based on neighborhood, path-based meth-
ods consider the global topological characteristics in the PINs.
The typical path-based approaches are CC [74], information
centrality (IC) [75], BC [76] and subgraph centrality (SC) [77].

Closeness centrality

In general, the central nodes of the network have less reliance
on other nodes, whereas the nodes at the verge of the network
must rely more on other nodes. CC [74] indicates how close the
current node is to all other nodes and reflects the centrality of
the node in the network. The greater the CC value of a node is,
the shorter the average distance between this node and others
is. It indicates that this node has low dependence on other nodes
and it is more likely to be in the center of the network. CC of a
node is inversely proportional to average shortest path from this
node to all the other nodes. For a given node vi, its CC value is
defined as the following equation.

CC(i) = n − 1
∑

j �=i ρ
(
i, j

) , (6)

where ρ
(
i, j

)
denotes the shortest path of vi and vj in the network.

The disadvantage defined above is that it can only be used
in the connected networks. Latora and Marchiori [78] improve
the above method to enable it to be used in the unconnected
networks.

EFF(i) =
n∑

j=1

1
ρ
(
i, j

) . (7)

If there is no path reachable between nodes vi and vj, then
ρ
(
i, j

) = ∞. CC uses the relative distance between all pairs of
nodes to determine the centralities of nodes, which is widely
used but has a high time complexity.

Information centrality

For a node vi, IC [75] measures the harmonic average of all paths
that end at vi. IC value is defined as the following equation.

IC(i) =
⎡

⎣ 1
n

∑

j

1
Iij

⎤

⎦

−1

. (8)

Defining the matrix C = (
cij

) = (
D − A + J

)−1, where all
elements in the n-dimensional matrix J are 1. Matrix D is an
n-dimensional diagonal matrix whose elements are the degree
of all nodes in the network. Thus Iij can be denoted as Iij =
(
Cii + Cjj − 2Cij

)−1. For the sake of computation, Iii is considered
as infinite, thus, 1/Iii=0.

IC reflects the information contained in all possible paths
in a network. The information content is inversely proportion
to the distance of a path in a network and the information
in a combined path is equal to the sum of the information of
the individual paths. Thus IC can simplify the computational
process and can be easily extended to a weighted network as
well as to an unconnected network.

Betweenness centrality

For the shortest paths of all node pairs, BC [76] considers that
the more the shortest paths pass through a node are, the more
important the node is. BC of a given node vi is defined as

BC(i) =
∑

k

∑

j

ρ
(
k, i, j

)

ρ
(
k, j

) , k �= i �= j (9)

Where ρ
(
k, i, j

)
corresponds to the number of shortest paths

from node vk to node vj that pass through the node vi, and
ρ
(
k, j

)
corresponds to the number of the shortest paths from

nodes vk to vj.
In some cases, the different nodes may have the same DC

or CC values, then the importance of the nodes can be dis-
tinguished by the BC value [77]. In addition, BC can be used
to characterize the ‘modularity’ of various biological and social
networks.

Subgraph centrality

SC [77] of a node vi calculates the number of closed loops in
which vi appears. SC is related to the length of the closed loop.
The shorter the length of the closed loop, the more convenient
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Network-based methods for essential genes 9

exchange of information on the closed loop. For a given node vi,
its SC value is defined as the following equation.

SC(i) =
∞∑

l=0

μl(i)
l!

=
N∑

v=1

(
ξv(i)

)2
eλv , (10)

where μl(i) represents the number of closed loops of length
l starting and ending at node vi. λv is the eigenvalue of the
adjacency matrix A and ξv is the eigenvector corresponding to
λv. ξv(i) is the ith component of ξv.

In addition, some other path-based methods, such as eccen-
tricity centrality [79], bottleneck [80] can also be adopted to pre-
dict the essentiality of a node in network effectively. Eccentricity
centrality of a node is defined as the maximum of distance
from this node to all others in the network. Bottleneck considers
that nodes with the highest BC values control the majority of
information flow, which is regarded as the essential nodes.

Eigenvector-based methods

Neighborhood-based and path-based approaches identify the
essentiality of a given node by the number of nodes that is con-
nected to this node in networks. Eigenvector-based approaches
not only consider the number of nodes that are connected to
the node but also consider the influence of their qualities. Typ-
ical eigenvector-based measures are: EC [81], google’s PageRank
centrality (PR) [82], LeaderRank centrality (LR) [83] and hyperlink-
induced topic search (HITs) [84].

Eigenvector centrality

A node’s EC [81] represents the intensity of the influence of
the node’s neighbors on it. EC considers that the essentiality of
a node depends on both the number of its neighbors and the
importance of each neighbor. EC of a given node vi is defined as
the following equation.

EC(i) = αmax(i), (11)

where αmax is the principal eigenvector of the adjacency matrix
A, and αmax(i) is the ith component of eigenvector αmax.

When there are some nodes with exceptional high degree
(hubs) in the network, the localization phenomenon of EC will
occur. That is, most of values are concentrated on the hubs,
making values of other nodes very low. In order to avoid this
phenomenon, Martin et al. [85] have proposed an improved EC
method based on the nonbacktracking matrix, which can obtain
values close to EC and eliminate the effect of localization.

Google’s PageRank centrality

PR [82], a variant of EC, holds that the importance of a node
depends on the quantity and quality of the other nodes pointing
to it. For a given node vi, the PR value can be calculated by the
following equation.

PRi(t) = (
1 − d

) n∑

j=1

aji

kout
j

PRj (t − 1) + d
n

. (12)

In each step, the PR value will be assigned to all nodes in the
network with the probability of d and will be assigned to the
nodes that are pointed by the node vi with the probability of 1−d.

Let aji/kout
j denotes the probability that a random walker goes

from vj to vi in the next step, kout
j is the out-degree of node vj. The

value of the parameter d depends on the specific situation and
can be set between 0 and 1. The larger the value, the faster the
convergence, while the lower the effectiveness of the algorithm.
When d = 1, all nodes have the same PR value. When d = 0, The PR
value of node vi at time t is calculated by the following equation.

PRi(t) =
n∑

j=1

aji

kout
j

PRj(t − 1) . (13)

However, the drawback of the above equation is that once a
PR value reaches a node with a zero out-degree (called a dangling
node), it will stay at that node forever and cannot be transmitted,
thus it will continuously hoard the PR value [82, 86].

Researchers have proposed a series of improved algorithms
based on PR. For example, in order to avoid the problem that dan-
gling nodes hoard PR values, Kim and Lee [86] evenly distribute
the PR values of dangling nodes to the n nodes in the network
in each step. It is equally probable PR picks the next node from
a node. However, Zhang et al. [87] consider that the greater the
out-degree of the n nodes, the more likely they are picked, thus
proposing the N-step PageRank algorithm.

LeaderRank centrality

LR [83] is proposed on the basis of PR. The parameter d in PR
is replaced by the addition of a ground node that connects to
all nodes through directional links, thus LR is parameter-free
and adaptive. The existence of the ground node also ensures the
strong connectivity of the network. For a given node vi, its LR
value at time t is defined as the following equation.

LRi(t) =
n+1∑

j=1

aji

kout
j

LRj (t − 1) . (14)

In the iteration process, the dimension of adjacency matrix
is n + 1. At the steady state, the value of the ground node will be
evenly assigned to all nodes. Subsequently, the final value of LR
is defined as

LRi = LRi(tc) + LRg(tc)

n
, (15)

where tc is the convergence time and LRg
(
tc

)
is the value of the

ground node at the steady state.
Experiments have found that LR performs better than PR in

some ways. (i) LR converges faster than PageRank [88], (ii) LR can
better identify essential nodes in the network and (iii) LR is more
robust than PR in resisting random interference.

Hyperlink-induced topic search

HITs centrality [84] gives two metric values for each node:
authorities and hubs. Authorities measure the initial query
of a node and hubs embody the importance of a node in the
information dissemination. Defining at

i and ht
i as the authority

and hub of node vi at time t, respectively.

at
i =

n∑

j=1

ajih′t−1
j , ht

i =
n∑

j=1

aija′t
j . (16)
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10 X. Li et al.

The normalization process is required after the end of each
step

a′t
j = at

i

‖at ‖ , h′t
i = ht

i

‖ht ‖ . (17)

HITs are the first method to sort nodes in the network simul-
taneously with different metrics, it can be used to determine
multiple interrelated attributes of a node in network and handle
more complex ranking problem.

Besides the above topology-based methods that calculate
the centralities of a node from the global, local or eigenvector
perspective, there are some methods that combine different
types of topological centralities together. Rio et al. [89] have com-
pare the reliability of essential genes identified by 16 different
topology-based methods in 18 different reconstructed metabolic
networks for yeast, finding that a single topology-based method
does not significantly identify the essential genes, but methods
that combine at least two topological centralities can improve
prediction accuracy effectively.

All the above studies have shown that the topological
centralities are tightly bound to the essentiality of genes/pro-
teins. However, it is still a big challenge to further study the
intrinsic relationship of a protein’s topological characteristic
and its essentiality and improve the prediction accuracy of
the network-based methods as the high positives and false
negatives in current PINs. It has been shown that not all essential
genes/proteins are highly connected and some of essential
proteins are low connectivity. Hence, we need to analyze the
essential proteins’ topological characters from different types of
network centralities [90–93].

Integrating PINs and biological information to
predict essential genes or proteins
In order to overcome the above-mentioned constraints and
improve the accuracy of prediction, some researchers predict
essential genes/proteins by integrating PINs and biological
information. These methods not only utilize multiple networks
such as PINs, gene regulatory networks and metabolic networks,
but also combine a large number of biological data, such as
microarray data, RNA-seq data, subcellular localization infor-
mation, protein complex information, orthology information,
protein domains and other known functional information. The
predicted proteins are subsequently evaluated by comparison
to the known essential proteins. The schematic diagram of
integrating PINs and biological information to predict essential
genes or proteins is shown in Figure 2.

The existing prediction methods can be divided into the
following three perspectives: filtering ineffective interactions,
weighting edges and some other network-based methods.
Table 3 lists the summary of methods that integrate PINs and
biological information.

To reduce the effects of noise such as false positives and
negatives, some methods filter ineffective interactions in PINs. Li
et al. [94] utilize the gene expression and subcellular localization
information to refine the neighbors of proteins and then har-
ness a random walk algorithm to integrate proteins’ topological
centralities and their orthologous information. Based on the idea
that there is a greater possibility of physical interaction between
two proteins if they present in the same subcellular location and
are active at least at one time point in the cell cycle, Peng et al. [95]
reconstruct PINs based on subcellular location information and
the centrality–lethality theory is rechecked. Additionally, Li et al.
[96] partition the original network by analyzing the distribution

characteristics of proteins in different subcellular structures, so
as to obtain subnetworks with different priorities.

Some methods improve the accuracy of prediction by weight-
ing edges. Li et al. [97] calculate the confidence score of every
edge in the PINs by combining the logistic regression model and
functional similarity methods using GO semantic similarity and
PPI data, then a weighted network has been built based on the
scores to identify essential proteins. By analyzing the number
of orthologs of yeast proteins in 99 reference species such as
Homo sapiens (H.sapiens) and Escherichia coli (E.coli), Peng et al.
[98] find that the more frequently a protein appears in reference
species, the more likely that the protein is the essential protein
and propose the iteration method named ION to weight edges
by combining the homologous information and NC. Fan et al. [99]
find that the combination of multiple data sources can improve
the predictive performance; in particular, subcellular localiza-
tion information can facilitate the identification of essential pro-
teins. Consequently, a method named SCP has been proposed,
which combines both subcellular localization information and
Pearson correlation coefficient (PCC) in a modified PR algorithm.
On the basis of the integration of modularity and conservatism,
Zhao et al. [100] build three individual weighted networks, which
utilize the topological features of PINs, protein domain, gene
expression and orthologous information of proteins. Peng et al.
[101] combine protein domains and topological properties based
on the discovery that proteins are inclined to be indispensable
if they contain more domain types, while other proteins do not.
They weight edges in PINs by NC and the essential probability
of the two proteins that are calculated according to the quantity
and frequency of their domain type, then the importance of a
protein can be obtained by computing the sum of values of its
adjacent edges. Lei et al. [32] have constructed a weighted PINs
and proposed an algorithm RSG based on the GO terms informa-
tion, subcellular compartments and RNA-seq data. According to
the assumption that edges in the PIN are of different importance
in different subcellular locations, Peng et al. [102] propose a
method named CIC to score the edges taken place in different
compartments. Moreover, Li et al. [103] consider that essential
genes or proteins are prone to form densely connected clusters,
and essential genes or proteins in the same cluster are more
easily co-expressed. Thus, they propose a method named PeC
to score each edge in the PIN using NC and PCC. Similarly, Tang
et al. [104] assign a suitable ratio for PCC and NC to evaluate the
importance of edges in the PIN.

Additionally, Luo et al. [105] propose an algorithm named
LIDC by considering LID centrality and in-degree information of
protein complexes. Zhang et al. [106] come up with an ensem-
ble framework integrating PINs and gene expression data to
improve the accuracy of typical topological measures. By com-
paring the known essential proteins and the known protein
complexes, Li et al. [107] find that there is a close correlation
between proteins in complexes and the importance of proteins.
That is, proteins in complexes have a greater probability of being
indispensable than proteins not in any complex, and proteins
found in multiple complexes are more indispensable than those
found in only one complex. Therefore, the algorithm UC com-
bines protein complexes and topological centralities together
to predict essential proteins. Since essential proteins are more
inclined to be found in certain subcellular locations and their
evolution is more conservative, Li et al. [108] utilize orthology
and subcellular localization data to predict essential proteins.
Additionally, Li et al. [109] propose a scheme based on priori
knowledge and integrate gene expression profiles and network
topology in this new scheme to identify essential proteins.
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Network-based methods for essential genes 11

Figure 2. Schematic diagram of integrating PINs and biological information to predict essential genes or proteins.

Dynamic network-based methods to predict
essential genes or proteins
PINs change with time and conditions to ensure normal life
activities. The dynamic of cells in time and space plays a vital
role in the replication and viability of organisms [111–114]. Tra-
ditional methods construct static networks to analyze com-
plex networks under a single condition, but static networks
cannot reveal the dynamic of PINs. With the occurrence and
development of multi-omics data, it has become possible to
construct more comprehensive dynamic networks to predict
essential genes or proteins (Figure 3).

Recently, many studies identify the activities of genes or
proteins by analyzing the gene expression level at a certain
time and constructing a time series dynamic PIN to characterize
the dynamic of complex biological systems [115–117]. Accord-
ing to DNA microarray time series, Lichtenberg et al. [118] con-
struct a time series dynamic network based on both periodically
expressed genes with peak expression at different time points
and the protein interactions provided by the STRING database.
However, the time series dynamic networks constructed by the
periodically expressed genes with peak expression are small in
size, resulting in the loss of valuable biological information and
the inability to fully describe the complex process of PINs with
time. Hegde et al. [119] mention that the noise in gene expression
data is inversely proportional to the average gene expression
level. Only the expression levels of genes not lower than the
average values can be considered as valid expression and can
greatly eliminate the effects of noise.

However, setting a fixed threshold cannot be convincing
considering that there are also low-expressed proteins that are
significant in the cell cycle. In order to properly determine the
activities of proteins, a 3-sigma principle has been proposed to
calculate the dynamic threshold of each gene according to the
distribution characteristics of gene expression levels [120]. Meng
et al. [121] use the 3-sigma principle to determine the activated

time of proteins and consider the dynamic spatial information
provided by subcellular localization of proteins to construct a
spatial and temporal active PIN. Shen et al. [122] think that the
3-sigma principle will lead a lot of high-expression proteins to
be filtered out, resulting in the incomplete analysis of dynamic
interactions. In order to solve this problem, they screen active
proteins based on the deviation degree of gene expression curves
and build a time-evolving PIN to simulate the dynamic process
of protein interactions.

Dynamic networks have been successfully applied in the
identification of essential genes or proteins. Li et al. [123] have
purified the PINs by considering that a protein interaction is
valid when the two proteins appear in the same subcellular
location and are activated at least at one time point. Subse-
quently, the prediction accuracy can be improved by using the
refined PIN. Xiao et al. [33] divide the time series gene expression
data into two categories: time-dependent and time-independent
data. If the expression level of a gene at each time point is
time-independent and the average gene expression value is
small, the gene will be judged as noise and filtered out. Then
they use the 3-sigma principle to determine the time of protein
activity and construct an active PIN to predict essential pro-
teins. The summary of dynamic network-based methods is listed
in Table 3.

Machine learning-based methods to predict
essential genes or proteins
The identification of essential genes or proteins can be regarded
as a binary classification problem, its purpose is to classify a list
of genes or proteins into two groups by suitable features, which
are closely related to the essentiality of genes or proteins. There
are three criteria for feature extraction. First, the features should
be easy to obtain. Second, the features should be powerful to
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12 X. Li et al.

Figure 3. Schematic diagram of the time series dynamic PINs construction. First, according to the gene expression information, it is determined whether a protein

is expressed at the time points and under-expressed genes are filtered out. Second, constructing time series dynamic PINs combining static PIN and microarray time

series [110].

identify essential genes or proteins. Third, the features should
minimize biological redundancy [124].

Nowadays, the use of machine learning methods to predict
essential proteins has become a hot topic [125]. The commonly
used models include support vector machine (SVM), decision
tree, neural network, naïve Bayes and so on. The summary of
machine learning-based methods is listed in Table 3.

In order to make the extracted features meet the aforemen-
tioned criteria, some researchers have analyzed the relationship
between essentiality and features and the correlation between
the features. On the basis of the collection of 26 features, Zhong
et al. [126] select suitable features by adopting support vector
machines-recursive feature elimination (SVM-RFE) with 10-fold
cross validation to rank the feature list and select the suitable
subset of features. Subsequently, PCC method has been used to
evaluate the correlations between features in the subset. After
removing certain features that have the higher PCC values, the

resulting features not only have powerful prediction ability for
protein essentiality but also share minimal biological meaning
with each other. Since the features from experimental omics
data are often not available, Guo et al. [127] only use the inherent
characteristics derived from sequences, from which nucleotide
composition and association information can be denoted using
a λ-interval Z-curve. Then the SVM classification model is con-
structed to identify human essential proteins. Kim [34] uses
GO information to measure the similarity between proteins
and purifies the PINs by removing a number of ‘biologically
insignificant’ edges. Subsequently, eight centrality measures are
calculated on the refined PINs and 23 features are extracted.
The classifiers are trained by using seven decision-tree based
models, SVM and a neural network model, and then a ‘vote’
method is used to classify the proteins.

Deng et al. [48] adopt four separate classifiers (naive Bayes
classifier, logistical regression model, C4.5 decision tree and CN2
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Table 4. Tools for essential gene/protein prediction based on PINs

Tools Centralities Platform URL Reference

Cyto-Hubba Bottleneck; Maximum neighborhood component;
DMNC; Double Screening scheme of MNC and DMNC;
Edge percolated component

Cytoscape http://hub.iis.sinica.edu.tw/
cytohubba/

[131]

CytoNCA DC; CC; EC; IC; LAC; NC; SC; BC Cytoscape http://apps.cytoscape.org/apps/
cytonca

[132]

CentiLib DC; BC; Centroid centrality; CC; Current-flow CC;
Current-flow BC; Eccentricity centrality; EC; HITS;
Hubbel index; Katz status index; PageRank; Radiality
centrality; Stress centrality

Vanted and
Cytoscape

https://immersive-analytics.
infotech.monash.edu/centilib/

[133]

CentiScaPe BC; Bridging centrality; Centroid centrality; CC;
Eccentricity centrality; EC; Radiality centrality; Stress
centrality

Cytoscape http://www.cbmc.it/&#x007E;
scardonig/centiscape/centiscape.php

[134]

NetworkAnalyzer DC; BC; CC; Clustering coefficient; Eccentricity
centrality;
Neighborhood connectivity; Radiality centrality;
Shared neighbors; Shortest paths; Stress centrality;
Topological coefficients

Cytoscape http://med.bioinf.mpi-inf.mpg.de/
networkanalyzer/

[135]

SBEToolbox BC; Bridging centrality; CC; Clustering coefficient; DC;
Eccentricity centrality; Knotty centrality

MatLab toolbox https://github.com/biocoder/
SBEToolbox/releases

[136]

FUGA DC; EC; Clustering coefficient; Eccentricity centrality;
Local efficiency; Node BC

MatLab toolbox https://code.google.com/archive/p/
fuga/

[137]

CentiBiN DC; Eccentricity centrality; Bargaining centrality;
Centroid centrality; CC; Closeness vitality;
Current-flow BC; Current-Flow CC; EC; HITS; Hubbell
index; Katz status index; PageRank; Radiality
centrality; Shortest-Paths BC; Stress centrality

Java standalone
platform

http://centibin.ipk-gatersleben.de/ [138]

DyNetViewer TC-PIN, DPIN, NF-APIN; ST-APIN; BC; CC; DC; EC; LAC;
NC; SC; IC; Stress centrality; Radiality centrality;
Eccentricity centrality; Centroid centrality

Cytoscape http://apps.cytoscape.org/apps/
dynetviewer

[139]

rule) to evaluate the predictive ability of different features for
protein essentiality. They sort all features based on the coverage
length of log-odds ratio. The longer the total coverage length is,
the more relevant the corresponding feature is to the essentiality
of proteins. Those with positive effect and a monotonic rela-
tionship with essentiality are the candidate features. Then, they
minimize biological meaning by removing candidate features
that have the higher PCC values. Gustafson et al. [128] integrate
topological features and apply a naive Bayes classifier to mea-
sure the predictive performance of both the individual feature
and the integrated features.

Acencio et al. [129] extract 12 different network topological
characteristics, and biological characteristics such as BP terms
in GO are also adopted. Based on these characteristics, a deci-
sion tree-based meta-classifier is trained and tested to identify
essential proteins.

Recently, deep learning methods have been successfully
applied in the field of essential gene/protein identification. Zeng
et al. [130] propose a deep learning framework that makes use
of the node2vec technique to learn topological features from PPI
network and utilize convolutional neural networks to extract
the patterns of gene expression profiles.

Tools and applications
At present, a variety of tools have been developed to predict
essential genes or proteins based on PINs. Here, we introduce
some useful tools that integrate multiple network-based meth-
ods for essential gene prediction: Cyto-Hubba [131], CytoNCA
[132], CentiLib [133], CentiScaPe [134], NetworkAnalyzer [135],

SBEToolbox [136], FUGA [137], CentiBiN [138] and DyNetViewer
[139]. The details of these tools are listed in Table 4.

Cyto-Hubba provides the analysis of node essentiality in
biological networks and subnetworks composed of essential
nodes. CytoNCA provides computation, evaluation and visu-
alization analysis for several centrality indexes of weighted
and unweighted network. CentiLib calculates weighted and
unweighted centralities in biological networks. CentiScaPe inte-
grates the computation of centralities for undirected, directed
and weighted networks. NetworkAnalyzer calculates specific
topological parameters of molecular interaction networks and
visualizing the results. SBEToolbox calculates centralities and
topological statistics for biological networks and it only supports
undirected networks. FUGA is a toolbox for inference and
analysis of biological and cellular networks. CentiBiN provides
17 topology-based methods for directed or undirected networks
and the visualization of centralities. DyNetViewer provides
four methods for the construction of dynamic networks and
topology-based methods to analyze the essentiality of nodes in
dynamic networks.

Challenges and future work
Essential genes are necessary for the survival of organisms
and their products, essential proteins, play an important role
in the growth and development of organisms because of their
unique biological functions. Computational methods for identi-
fying essential genes and proteins can reduce the workload and
provide new candidate genes and proteins for biologists. In this
paper, we review the advanced methods for predicting essential
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genes/proteins based on network. For making a more informed
judgment about the utility of these methods, we compare them
on six yeast PINs that include two PINs with different sizes and
four PINs with different reliability (Supplementary Materials).
The two different size PINs are obtained from DIP and BIOGRID,
respectively and other four PINs are collected from Mering et al.
[140], named Y2K, Y11K, Y45K and Y78K according to the cred-
ibility, respectively. The results indicate that the network-based
methods do have the ability to efficiently predict essential genes
or proteins. Meanwhile, these methods can obtain better predic-
tion results on the highly reliable networks such as Y2K than
the predictions on high-noise networks. With the increase of the
scale and noise of networks, the predictive performance of some
methods will reduce, while some methods integrating biological
information have the anti-noise ability and still maintain the
predictive ability. Therefore, integrating effective biological infor-
mation and constructing highly reliable networks provides an
effective way to improve the accuracy of essential gene/protein
predictions.

In what follows, we present the challenges and future work.
The PPI data measured by experimental techniques is

incomplete and has noise, which will reduce the accuracy
of network-based methods for predicting essential genes or
proteins. Therefore, the big challenges of further researches are
how to present effective pre-processing methods to process PPI
data and develop suitable pre-processing techniques for each
organism. At the same time, in addition to PINs, other networks
such as metabolic networks [141], signal transduction networks
[142] and gene regulatory networks [143, 144] have also been
proved to be related to essential genes [145, 146]. How to predict
essential genes in combination with multiple networks is the
focus of future work.

PINs are dynamic, which is embodied in two aspects: tem-
poral dynamics and spatial distribution characteristics. Current
researches mainly analyze the dynamic changes of genes or
proteins in time series based on the microarray data. However,
with the development of next-generation sequencing technolo-
gies such as RNA-seq, a more comprehensive gene expression
map is provided. It is necessary to collect and sort RNA-seq time
series data to design a new dynamic network model. Moreover,
single-cell sequencing data can reflect the intracellular network,
which can promote the prediction of essential genes or proteins.
The effective combination of single-cell sequencing data to build
more reliable networks is the focus of future research. Mean-
while, single-cell proteomics [147] may become a reality and be
used to build more accurate PINs. Furthermore, PINs will change
with different tissues or subcellular location, which indicates
that spatial information is also important to construct dynamic
networks. Consequently, the future work is how to combine spa-
tial information and design reasonable and effective methods to
determine the active PINs.

With the development of high-throughput technologies, a
great deal of omics data such as genomics, proteomics and
transcriptomics has been accumulated, while the relationship
between some biological information and essential genes/pro-
teins has not been thoroughly explored. The effective integration
of multi-omics data to predict the essentiality of genes/proteins
needs to be improved.

In most of the studies, model organisms, especially yeast,
are used as the main research object [148, 149], while other
species are poorly analyzed, such as various microbial flora.
Meanwhile, identification of essential genes in human cancer
cell lines is the valuable research direction. Furthermore, some
studies have shown that essential genes or proteins tend to be

evolutionarily conserved [150–152], which indicates that there
is a close relationship between essential genes or proteins in
different species. Predicting essential genes or proteins across
species may be the focus of future work.

Key Points
• Available databases related to essential genes and

proteins are introduced, and the popular tools are
described.

• This article summarized the commonly used meth-
ods including topology-based methods, methods of
integrating PINs and biological information, dynamic
network-based methods and machine learning-based
methods in predicting essential genes or proteins.

• Focusing on the difference between the various meth-
ods, we discussed the use of parameters of various
methods and different applicable situations.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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